Alpha calcium/calmodulin-dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory-motor cortex: comparison with GAD-67 expression.

نویسندگان

  • E G Jones
  • G W Huntley
  • D L Benson
چکیده

In situ hybridization histochemistry and immunocytochemistry, including double immunofluorescence, were used to study the populations of neurons expressing the alpha subunit of type II calcium/calmodulin-dependent protein kinase (CAM II kinase-alpha) or glutamic acid decarboxylase (GAD) in the somatic sensory and motor areas of the macaque monkey cerebral cortex. Sections were subjected to in situ hybridization using radioactive, complementary RNA probes specific for monkey CAM II kinase-alpha or 67 kDa GAD mRNAs. Others were stained immunocytochemically for CAM II kinase-alpha and/or GABA. CAM II kinase-alpha and GAD-67 are expressed in different populations of cells, with no colocalization. CAM II kinase-alpha is expressed in pyramidal cells of layers II-VI, especially layers II and III, as well as in certain small nonpyramidal cells of layer IV in areas 3a, 3b, 1, and 2 and of middle regions of area 4. Both cell types produce excitatory amino acid transmitters. Therefore, as in subcortical regions, CAM II kinase-alpha will be found on the presynaptic side of excitatory synapses but on the postsynaptic side only when these synapses occur on excitatory neurons in the sensory-motor cortex. Quantitative examination showed that CAM II kinase-alpha immunoreactive cells form, on average, approximately 50% of the total neuronal population in each area, while GABA immunoreactive or GAD cRNA hybridized cells form approximately 25-30%. Thus, CAM II kinase-alpha expressing cells cannot account for the total population of non-GABAergic cortical cells, and a certain proportion of the pyramidal cells probably do not express it. In other cortical areas, gene expression for the two molecules is regulated by afferent activity. Therefore, the present results form a necessary basis for studies aimed at determining the role of activity-dependent changes in the balance of excitation and inhibition as a mechanism underlying plasticity of representational maps in the primate sensory-motor cortex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

Differential and time-dependent changes in gene expression for type II calcium/calmodulin-dependent protein kinase, 67 kDa glutamic acid decarboxylase, and glutamate receptor subunits in tetanus toxin-induced focal epilepsy.

To study potential molecular mechanisms of epileptogenesis in the neocortex, the motor cortex of rats was injected with tetanus toxin (TT), and gene expression for 67 kDa glutamic acid decarboxylase (GAD-67), type II calcium/calmodulin-dependent protein kinase (CaMKII), NMDA receptor subunit 1 (NR1), and AMPA receptor subunit 2 (GluR2) was investigated by in situ hybridization histochemistry. I...

متن کامل

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

Differential effects of monocular deprivation on glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase gene expression in the adult monkey visual cortex.

Increases in immunocytochemically detectable type II calcium-calmodulin-dependent protein kinase (CaM II kinase) and decreases in immunocytochemically detectable glutamic acid decarboxylase (GAD) are known to occur in the visual cortex of adult monkeys following brief periods of monocular visual deprivation. In the present study, GAD and CaM II kinase gene expression was investigated under thes...

متن کامل

Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in the Rat Hippocampus during Morphine Withdrawal

Introduction: Calcium/calmodulin-dependent protein kinase II (CaMKII) is highly expressed in the hippocampus, which has a pivotal role in reward-related memories and morphine dependence. Methods: In the present study, morphine tolerance was induced in male Wistar rats by 7 days repeated morphine injections once daily, and then gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hipp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 14 2  شماره 

صفحات  -

تاریخ انتشار 1994